MM90: A Scalable Parallel Implementation of the
Penn State/NCAR Mesoscale Model (MMD5)

J. Michalakes

Mathematics and Computer Science Division, Argonne National Laboratory

Argonne, Illinois, U.S.A. 60439

This paper describes MM90, a parallel regional weather model based
on the Penn State/NCAR MMS5. Parallelization of finite differencing,
horizontal interpolation, and nesting on distributed-memory (message-
passing) computers is handled transparently using the RSL library pack-
age. Fortran90 modules, derived data types, dynamic memory allocation,
pointers, and recursion are used, making the code modular, flexible, ex-
tensible, and run-time configurable. The model can dynamically sense
and correct load imbalances. The paper provides performance, scaling,
and load-balancing data collected on the IBM SP2 computers at Argonne
National Laboratory and NASA Ames Laboratory. Future work will ad-
dress the impact of parallel modifications on existing modeling software;
an approach using commercially available source translation software is

described.

1 Introduction

Regional models of the earth’s atmosphere provide high resolution for
weather forecasts and climate predictions but require large amounts of com-
puter power. The need to run larger and longer scenarios at higher resolu-
tions with more sophisticated physics will continue to exceed capabilities of
nonscalable computer architectures. This paper describes a multiyear effort
at Argonne National Laboratory to develop tools and techniques for imple-
menting regional weather models on scalable, distributed-memory computers,
sometimes called massively parallel processors (MPPs), and other distributed-
memory computing environments, such as networks of workstations. The fo-
cus of this effort has been the development of MM90, a parallel implementa-
tion in Fortran90 of a well-known and widely used regional weather model,
the Pennsylvania State University /National Center for Atmospheric Research
Mesoscale Model, MM5. This work addresses the dual and often conflicting
concerns for good performance and maintainable software.

Achieving good, scalable performance requires that the resources of the
parallel machine be used efficiently. Each processor operates on the data in

Preprint submitted to Elsevier Preprint 19 May 1997

its local memory and exchanges data with other processors when operands
are not available locally. Communication, idle time from uneven workload or
processor capability, and 1/O costs must be addressed to give efficient scaling
(relative to perfect scaling, where execution time is inversely proportional to
the number of processors). Scaling in memory is also a consideration, since
it allows the aggregate memory available on MPPs to be used to run very
large problems. Parallelization is described in Section 2. Section 3 describes
dynamic load balancing in MM90. Performance benchmark results are given
in Section 4.

Software is an issue insofar as modifications segregate the parallel code
from the officially maintained version of MM5. Although many details of the
parallelization have been encapsulated within a parallel library, a troublesome
amount of parallel artifact remains. Thus, MM90 has evolved into a sepa-
rate, nonstandard version of MM5. Section 5 describes effort now underway
to employ source translation technology to make virtually all modifications for
distributed-memory parallelism transparent. The result will be a true single-
source expression of MM5 that provides good performance on diverse high-
performance architectures.

1.1 MM5, MPMM, and MM90

The Penn State/NCAR model is a limited-area (as opposed to global)
model of atmospheric systems over regions ranging from several thousand
to several hundred kilometers. Originally developed in the late 1970s [1], the
model is now in its fifth generation, MM5 [3]. It is a primitive-equations model
employing finite differencing on an Arakawa-B grid for the computation of at-
mospheric dynamics (advection and diffusion) under both hydrostatic and
nonhydrostatic assumptions, both of which employ time splitting. In the hy-
drostatic case, a split-explicit scheme is used to handle fast-moving gravity
waves without reducing the overall model time step. In the nonhydrostatic
case, which is fully compressible and permits sound waves, a split semi-implicit
method is used. Vertical propagation of sound waves is treated implicitly, al-
lowing the length of the split time step to be independent of vertical resolu-
tion. Initial conditions and forcing for lateral boundaries come from external
sources: global atmospheric models and observations. MM5 allows multiple
nested grids with two-way interaction between nest levels. Four-dimensional
data assimilation (FDDA) is provided as an option for incorporating observa-
tions during a run. The model is maintained in the public domain by NCAR for
internal use and by three-hundred groups at institutions worldwide for weather
forecasting, regional climate prediction, air-quality, and storm research. !

The Massively Parallel Mesoscale Model (MPMM) [2][8] was developed

by Argonne researchers beginning in 1992 on the Intel Touchstone Delta com-

I The MM5 source code and other information are available from
http://www.mmm.ucar.edu/mm5.

Table 1
MM5 versions and options supported in parallel MPMM and MM90 codes
MM5vi MPMM MM90 MM5v2

Dynamics Hydrostatic . .
Non-hydrostatic
PBL Bulk . .
Blackadar
Burke-Thompson . . .
Cumulus Grell
Anthes-Kuo
Kain-Fritsch .
Fritsch-Chappel .
Betts-Miller .
Arakawa-Schubert .
Radiation Simple
Dudhia
CCM2 .
Moisture Warm rain
Mixed phase
Grauple (GSFC) .
Grauple (Reisner) .
FDDA Analysis . . .
Observational . .

puter (Caltech). Development has continued on the IBM SP2 at Argonne with
ports to other parallel systems: Intel Paragon, Cray T3D/E, Fujitsu AP1000,
SGI Power Challenge, and networks of workstations. MM5 was parallelized
using the Runtime System Library (RSL), a communication and portability
library that provides high-level communication, automatic two-dimensional
irregular domain decomposition, support for remapping for dynamic load bal-
ancing, automatic local/global index translation, and distributed I/O [6]. The
library is tailored to the needs of finite-difference regular grid weather mod-
els with multiple nests. It uses vendor-specific message-passing layers when
available (NX on the Paragon, MPL on the IBM SP2), and MPI on other
platforms. RSL was developed at Argonne National Laboratory in conjunc-
tion with MPMM and MM90. It is similar to packages developed by a number
of other groups [4][5][9].

MPMM and its follow-on Fortran90 implementation, MM90, are function-
ally equivalent in most respects to the 1995 release of MM5 (MM5v1). The
parallel model is strictly nonhydrostatic, although a separate hydrostatic ver-
sion of MPPM has been implemented by Y. Kim at lowa State. Since the
release of MM90, NCAR has released MM5 version 2 (MMb5v2). Options in
the parallel code are listed in Table 1.

MMO90 uses new features in Fortran90 — dynamic memory allocation,
modules, structures, pointers, and recursion — to make the model more flexi-

8 9 10 11

Fig. 1. Pointwise decomposition of an irregularly shaped domain over 12 processors
using RSL’s built-in partitioner. The number of grid-points per processor differs by
no more than 2.

ble and run-time configurable. Building on this flexibility, MM90 includes ad-
vanced features such as dynamic load balancing and irregularly shaped nests,
which replace overlapping nested grids in the source model. MM90 is the fore-
cast model component of the prototype Global Theater Weather Analysis and
Prediction System (GTWAPS) at the U.S. Air Force Global Weather Central
(AFGWC). MPMM is used on the Cray T3D at the U.S. EPA National En-
vironmental Supercomputing Center (NESC) to provide meteorological input
for air-quality modeling. MM90 and MPMM are also used for study of re-
gional climate at Australian National University, lowa State University, and
the Fraunhofer Institute (Germany).

1.2 Acknowledgments

Argonne researchers T. Canfield, K. Dritz, S. Hammond, I. Foster, J.
Mogill, and R. Nanjundiah contributed to the design and implementation
of MPMM and MM90. NCAR researchers J. Dudhia, G. Grell, and W. Kuo
provided access to and assistance with MM5. Y. Kim at lowa State University,
J. Larson and D. Sitsky at Australian National University, and V. Wayland at
Cray Research contributed to the code development. The U.S. Air Force and
the U.S. EPA sponsored the MPMM and MM90 projects. Argonne National
Laboratory (under U.S. Department of Energy contract W-31-109-Eng-38)
and the NASA Numerical Aerospace Simulation Facility are gratefully ac-
knowledged for grants of machine time and assistance.

2 Parallelization

MMS5 is parallelized using two-dimensional data domain decomposition.
Two- and three-dimensional data arrays containing state variables — wind ve-
locity, temperature, moisture, and pressure — as well as diagnostic and inter-

mediate fields are partitioned in two dimensions (north/south and east/west)
and the resulting subdomains are distributed over processors. Extra mem-
ory is allocated at processor subdomain boundaries for ghost points to store
off-processor operands for finite differencing and horizontal interpolation.

RSL automatically decomposes a domain when it is defined or, in the case
of a nest, spawned. Each domain is decomposed independently over the same
set of processors; that is, each processor has a portion of every domain in
the simulation. In RSL a grid point is the unit of work that is mappable to
processors, and subdomains are not constrained to any particular shape. This
approach supports load balancing by allowing more precise allocation of work
to processors than strategies that constrain subdomains to rectangular shapes.
Pointwise decomposition is especially useful if the domains themselves are not
rectangular (Figure 1). Domains may be remapped at run time to address load
imbalances.

Decomposing domains over processors generates the need for two types
of communication, intra- and interdomain (Figure 2). Intradomain commu-
nication is characterized by the size and shape of the computation’s stencil
and is handled by a stencil exchange in RSL. Stencil exchanges are inherently
“nearest neighbor” and therefore well suited to provide good performance
on distributed-memory parallel computers. By precomputing communication
schedules, RSL is able to execute an exchange with just two messages (one in
each direction) per processor pair per stencil exchange, a benefit on machines
where the cost of starting a message (latency) is significant (e.g., IBM SP2 and
Intel Paragon). In addition, RSL allows many fields to be communicated in a
single exchange, facilitating hoisting, the combining of exchanges to minimize
the number per time step. Thus, MPMM and MM90 require only twelve ex-
changes per time step: four stencil exchanges during the main nonhydrostatic
solver plus two exchanges for each of four minor iterations of a solver for sound
waves.

Interdomain communication is necessary to parallelize nest forcing and
feedback in MM5. RSL establishes logical communication streams between
associated points in the parent and nest and provides routines for scatter-
ing and gathering data over these streams. As with stencil exchanges, RSL
precomputes schedules so that the underlying communication is efficient.

2.1 Memory Scaling and Local Iteration

Model data structures are shrunken in the north/south and east/west
dimensions, using only as much memory as needed on each processor. RSL
returns the minimum local array size whenever a domain is decomposed (when
it is defined or when it is remapped for load balancing). The MM90 code
uses this information to dynamically allocate grid arrays using the Fortran90

| |I |
I I
| ' | NEST
_____ |-._:_J_|_—_ T e
- .- L | L
' o I | |
| I Vo ___1 1
_____ T R - RPN Ry S
s St e P
|
| N [~ I 1 |
Y 1. ! I | I
: LI I LI
___1 |
PARENT - rl'——r— rll‘—"
| I I
I | |
| 1

Fig. 2. Intra- and interdomain communication

ALLOCATE statement. 2

Shrinking local data structures for memory scaling requires attention to
iteration over decomposed dimensions, since the implicit identity between logi-
cal and memory indices no longer holds. The logical indices of a grid-point may
not be used to access an array in local memory; nor may local indices be used
to test for proximity with a domain boundary. The pointwise-decomposition
strategy employed by RSL further complicates horizontal iteration. RSL pro-
vides programming constructs and run-time information for iterating over the
local subdomain on each processor and for translating between logical and

2 MPMM, the Fortran77 version, uses static memory allocation at compile time.
The size information returned by RSL is used as a run-time check.

recursive subroutine iterate_model(d, start_time, end_time)
use domains_module
type (domainstruct) d ! structure for this domain

do while (djxtime .ge. start_time .and. d/xtime .1t. end_time)
call time_step(d)
do kid = 1, maxkids
if (dfactive(kid)) then
call force(d, dYchild(kid))
call iterate_model(d¥%child(kid), dYxtime-d%dt, d¥xtime)
call feedback(d, d¥%child(kid))
endif
enddo
enddo
return

Fig. 3. Using Fortran90 recursion for iteration over domain hierarchy. Top-level call
is CALL ITERATE_MODEL(MOTHER, 0., TIMAX).

memory indices.

2.2 1/0

MMS5 outputs 13 three-dimensional and 13 two-dimensional fields each
time it generates a history write; depending on the configuration this amounts
to between five and ten Mbytes every three, six, or twelve model hours. RSL
implements distributed 1/O using a single-reader/single-writer strategy: one
processor performs Fortran record-blocked I/O and distributes or collects the
data to or from the other processors. This strategy permits MM90 to read
and write standard MM5 data sets but is not scalable. Fortunately, output is
infrequent and small compared with the amount of computation. Further, the
cost of reading and writing the file system far exceeds the cost of interprocessor
communication. Hence, addressing [/0O speed on the reader/writer processor
by ensuring that the processor reads and writes local disk or some other fast
file system (e.g., PIOFS on the IBM SP2) has proven sufficient (Section 4).
Future output requirements or increased input volume for FDDA may require
revisiting this problem.

2.3 Fortran90 in MM90

MM90 employs a number of Fortran90 features — abstract data types,
pointers, dynamic memory, and recursion — to achieve a more modular, flexi-
ble, and run-time configurable model suitable for distributed memory parallel
computers:

— COMMON data and the myriad include files have been replaced by a For-
tran90 MODULE, containing definitions of the domain data type and routines

domains module

domain type definition

parent I

dyn. allocated
memory for

mother

t:hile red I

dyn. allocated
TN T T memory for

field ptrs

P g o ficlds

Fig. 4. MM90 nest-hierarchy implemented as nodes-and-pointers; each node is a
dynamically allocated domain structure.

for manipulating (e.g., allocating or deallocating) instances of this type.

— Each domain (grid) is an instance of a dynamically allocated derived data
type (structure). New nests can be activated or deactivated at any time
during the run. Crucial for load balancing, data structures of an active
domain can be resized if remapping causes a change in the distribution of
points to processors.

— The hierarchy of nested domains is represented by a tree of domain struc-
tures connected by parent and child pointers and rooted at the global do-
main pointer variable MOTHER. The top level of MM90 employs recursion
to traverse the hierarchy (Figure 3).

— The model is 100 percent run-time configurable. Whereas changing nest-
ing and physics options in the MM5 code often requires recompilation, the
MM90 code is configured entirely through the namelist.

The principal object in MM90 is the domains module. It contains the
definition of a domain structure (a Fortran90 derived data type) and a pointer
to the root of a tree of domain structures that represent the hierarchy of
nesting (Figure 4). A domain structure (Figure 5) contains domain-specific
scalar data and all two- and three-dimensional state arrays for the domain,
defined as “deferred-shape” arrays. These have no memory until explicitly
allocated. This approach allows run-time allocation of memory in the size and
shape necessary for the local partition initially and during remapping.

3 Dynamic Load Balancing

Load balancing in MM90 is implemented by identifying the key computa-
tional segments of the code and then inserting instrumentation that measures
the cost of computing each column in those segments. The segments are

(i) Planetary boundary layer and radiation;
(ii) Calculation of horizontal diffusion coefficients;
(iii) Horizontal and vertical advection. diffusion, cumulus, explicit moisture ,
convective adjustment, boundary nudging;
(iv) Split semi-implicit solver for sound waves; and
(v) Interpolation for nest boundary forcing.

Several sections known to be lightweight were omitted or combined into
the ones shown.

The number of milliseconds to compute column z,j in a segment is ac-
cumulated into the corresponding entry of a two-dimensional array of timers
for that segment. Periodically, a new mapping II""" is computed, and the
efficiency of the new mapping is compared with the old mapping. The new
mapping is adopted if it improves efficiency by more than e.

T T
new > old
P max, 11" (p, T) = P max,lU"(p,T)

+ €

T" denotes the array of timers with an entry for each point in the domain,
and 37" is the total time for all points in the domain. II(p,7T") denotes total
time for the columns of T allocated to processor p under mapping II. P is the
number of processors. Performance of the model with dynamic load balancing
is discussed in Section 4.

4 Performance

Concern for model performance falls into two categories: “raw” perfor-
mance and scaling. Raw performance, or time-to-solution is usually (and jus-
tifiably) the bottom line for users. Scaling is important as a measure of machine
utilization and provides the ability to increase capabilities by simply adding
processors. Benchmark results for MM90 were gathered on the IBM SP2 at the
Numerical Aerospace Simulation (NAS) facility at NASA Ames laboratory.

3 The NAS SP2 is composed of 160 RS/6000-590 processing nodes on a
high-speed switch for message passing. Additional information is available at

http://lovelace.nas.nasa.gov/Parallel/ SP2.

type domainstruct
integer 1il,j1,]jl
integer stencil_a, stencil_b,...
real, pointer :: psa(:,:),tga(:,:),... ! 2d arrays
real, pointer :: wa(:,:,:),va(:,:,:),... ! 3d arrays
type (domainstruct), pointer : parent, child(:)
endtype domainstruct
type (domainstruct), target :: mother I root

Fig. 5. Fortran 90 code defining a skeletal domain structure

Parallel MM5 Performance (No Nests)

T T T T T
6000 ldedl —— |
MM90 -+--
MM90 with 1/O -=---
5000 1
- 4000 |+ P
2]
§ .
?Oz 3000 o
= L .
’,+/
2000 =
1000 | A
e’
//
O 1 1 1 1 1
4 16 32 64 128
Processors
Parallel MM5 Performance (Doubly Nested)
3000 T T T T
Idea ——
MM90-LB -+--
L MM90-LBw/ 1/O -&-- |
2500 MM90-NOLB, w/ I/O -
2000
o
j
Q
8
z 1500 |
k=) x
=
1000
500
O 1 1 1 1

4 16 32 64
Processors

Fig. 6. Performance without and with nesting

All runs were conducted with single (32-bit) floating-point precision.

Figure 6 shows model performance in Mflop/sec for two scenarios, one
without and one with nesting.

The first scenario is a single 100-km resolution domain with grid dimen-
sions 61 by 61 horizontally and 23 levels. The run is nonhydrostatic with
full physics including explicit moisture with mixed-phase ice, cumulus (Grell),
radiation (Dudhia), PBL (Blackadar), and an upper radiative boundary con-
dition. The relatively coarse resolution would not usually warrant nonhydro-
static numerics. However, for comparison with higher-resolution nested runs
(and because the hydrostatic solver is not parallelized in MM90), all runs
were done nonhydrostatically. The scenario, centered over the Korean penin-
sula is from July 1995, during Typhoon Faye. Lateral boundary conditions
are read every 12 hours; output data is generated every 6 simulation hours.
The floating-point rates are based on an estimated 716 Mflop/time step. The
model runs at 47 Mflop/sec on 1 processor and 2.9 Gflop/sec on 128 proces-

10

L L e 1

m ﬁNestfeedhack

i 40000 - 1- Mest forzing

! Stencil Exchange

1 :

i Zooon 4 i Computation

s

e

o 20000 -

a

; 10000 - e — s

s ‘ \ ;

n] T T T
4 16 2 =
pracessars

Processors | Computation | Stencil exch. | Forcing | Feedback | I/O

4 84.7 3.0 9.5 1.7 1.1

16 61.8 7.6 27.4 2.4 9

32 56.4 8.8 30.2 3.0 1.5

64 51.8 9.8 32.1 3.4 3.8

Fig. 7. Cost as a percentage of total run time in doubly nested runs

sors, including time spent performing 1/0. A 36-hour forecast (5-minute time
steps) completes in 1 hour and 50 minutes on 1 processor and in 110 seconds
on 128 processors 1/O comprises 7 percent of total run time on 32 processors,
14 percent on 64 processors, and 25 percent on 128 processors. The apparently
high cost for I/O is explained by the fact that the total run time for a 36 hour
forecast is under 2 minutes, indicating a small computational problem to begin
with. Efficiency is 70 percent on 32 processors, 62 percent on 64 processors,
and 48 percent on 128 processors. Since the effect of dynamic load balancing
on the single-domain runs is nominal, only the non-load balancing times are
shown.

The second scenario adds two nests to the original scenario: a 33-km nest
within the mother domain and an 11-km nest within the 33-km nest. The
nests have the same grid dimensions as the mother. Cost per five-minute time
step is 8054 Mflop. The model runs at 176 Mflop/sec on 4 processors (the
scenario is too large to run on a single processor) and at 1592 Mflop/sec on 64
processors; results from a 128-node run were not available. Although there are
thirteen times as many iterations per five-minute time step — one at 100-km,
three at 33-km, and nine at 11-km — the number of floating point operations
is only 11.25 times greater. This is because radiation calculations are done
at a fixed interval of thirty minutes, regardless of resolution; therefore the

11

ratio of non-radiation steps to costly radiation steps increases as resolution
becomes more fine. Results from a 128-node run were not available. On the
considerably larger doubly nested problem, I/O comprises only 1.6 percent of
total run time on 32 processors and 4 percent on 64 processors. Efficiency is
74 percent on 16 processors, 64 percent on 32 processors, and 57 percent on
64 processors. A 36-hour forecast completes in 5.5 hours on 4 processors and
in 36 minutes on 64 processors, including 1/0O.

Figure 7 shows a detailed breakdown of the component costs of the doubly
nested scenario. Computation scales well, and the communication associated
with stencil exchanges also stays under 10 percent; [/O is also not a major
concern. The principal source of inefficiency is nest forcing. The inefficiency
is not communication, however. Nest feedback, which communicates consid-
erably more data than forcing — data from the nest interior is fed back while
only the nest boundaries are forced — has only a modest share of the cost.
Rather, the problem is a costly and imbalanced interpolation computation
during forcing that involves the parent-domain points over the nest bound-
aries. We are addressing this imbalance by distributing the interpolation work
more evenly over processors without migrating the points themselves, as is
done to address other forms of load imbalance.

Dynamic load balancing in MM90 can handle load imbalances that result
from poor guesses at initial decompositions and load distributions that change
over time, as a function of either the state of the model (different paths being
executed in model physics depending on the state of the atmosphere) or the
state of the computing environment. Dynamic load balancing significantly
improved the doubly nested NAS runs (Figure 6). Efficiency from 4 through
64 processors was 57 percent with load balancing but only 48 percent without.
Nevertheless, in its current configuration, MM90 does not exhibit a high degree
of physics-induced dynamic load imbalance. For this paper, a dynamic load
imbalance is simulated within an eight-hour single-domain simulation using
32 processors of the Argonne SP2 to test the model’s ability to rebalance the
load automatically (Figure 8).

For the first 2.5 hours (Period A), the model runs normally. The maxi-
mum processor time is 15.0 seconds and the mean is 14.1 seconds, giving an
efficiency of 94 percent (Trnean/Timaz). At hour 2.5, a two-fold increase in load
is induced within a centered circle, radius 1/5 the width of the grid. This
increases maximum processor time to 35.1 seconds; the mean is 17.4 seconds
(Period B). Computational efficiency drops to 50 percent. MM90 detects and
corrects the imbalance at hour 3.5 by moving work off the processors in the
center of the domain (Period C). As a result, efficiency rebounds: the maxi-
mum processor time is 19.6 seconds, and the mean is 18.9 seconds. Efficiency
is restored to 96 percent. At hour 4.5, the induced load finishes, and the distri-
bution again becomes imbalanced because the interior cells are now too lightly
loaded (Period D). Efficiency drops to 78 percent. The remapping step at hour
5.5 corrects this and restores efficiency to 95 percent (Period E).

Full rebalancing (Tinap + Tinove) costs 12 seconds. Calculating a remapping

12

S000

4300

m 4000

1
1 3500

! 70 s a0 S) E— S 5 i |

S 2500
=]

C 2000 eedhome el i

a
n 1500 - b P UL e - B LR O (| U SR . T 1 S .

1000
00 A B C D E

Period B Period C

time steps

Fig. 8. Correcting an artificially induced load imbalance in an 8-hour simulation on
32 processors. The top figure is time per time step, in milliseconds; each tick on on
the z-axis is an MM90 time step. The two lower figures show the decomposition
and resulting processor loads for two of the periods in the run (B and C). Lighter
grey denotes greater work, but the shading scales between the two periods are
different. Workloads between processors in Period C are actually closer together
than in Period B.

but retaining the old one (7,4, only) costs 2.5 seconds. Continued work will
focus on improving the efficiency of the mapping mechanisms and refining the
performance model for dynamic load balancing in MM90.

5 Source Translation

MMO90 provides both an excellent testbed for parallel computing research
and a production-quality weather model suitable for meteorological research

13

and operational weather forecasting. However, it is a separate code from the
official MM5 and has not kept up to date with the official version. Essentially
finished for the Air Force at the end of 1995, MM90 was soon a version behind
the NCAR model, with the release of MM5v2 in 1996.

A number of solutions have been proposed to address the problem of main-
taining a model a diverse computer architectures. Alternatives include condi-
tional compilation, parallelizing data-parallel compilers, the use of directive-
driven preprocessors, writing and maintaining separate versions, or accepting
suboptimal performance (or no port at all) for other architectures.

Source translation based on lexical, syntactic, and semantic analysis and
transformation of a code appears a most promising strategy. Source transla-
tion can automatically detect loops over decomposed dimensions and generate
the proper looping expression for the architecture, thereby facilitating local
iteration for distributed memory, multi-tasking for shared-memory, and re-
structuring for cache-blocking or vectorization. Source translation can also
automatically and interprocedurally identify data dependencies and generate
efficient communication. With run-time system support (e.g., RSL), source
translation can easily address irregular domains and domain decompositions
for load balancing. Source translation can target different underlying run-
time system libraries, as needed for a particular architecture or installation.
A project involving model developers at NCAR and software experts Applied
Parallel Research Inc. is underway to develop this approach for MM5 [7].

6 Conclusions

MMO90 is an efficient, scalable, and largely functionally equivalent imple-
mentation of the Penn State/ NCAR MM5 model. It is useful both as a testbed
for parallel computing research and for operational weather forecasting and
atmospheric research. It supports nesting and dynamic load balancing. It em-
ploys modules, derived data types, dynamic memory allocation, pointers, and
recursion in Fortran90 to produce a more modular, flexible, extensible, and
run-time configurable expression of the model. Many modifications for paral-
lelism, such as message passing and data domain partitioning over processors,
are handled transparently using RSL. The final step, source translation, will
complete the task of hiding remaining parallel artifacts relating to iteration
over decomposed dimensions and boundary computations.

References

[1] R. ANTHES AND T. T. WARNER, Develpment of hydrodynamic models suitable
for air pollution and other mesometeorological studies, Mon. Wea. Rev., 106
(1978), pp. 1045-1078.

[2] I. FOosTER AND J. MICHALAKES, MPMM: A Massively Parallel Mesoscale
Model, in Parallel Supercomputing in Atmospheric Science, G.-R. Hoffmann and

14

T. Kauranne, eds., World Scientific, River Edge, New Jersey, 1993, pp. 354-363.

[3] G. A. GRELL, J. DUDHIA, AND D. R. STAUFFER, A Description of the Fifth-
Generation Penn State/NCAR Mesoscale Model (MM5), Tech. Rep. NCAR/TN-
398+ STR, National Center for Atmospheric Research, Boulder, Colorado, June
1994.

[4] R. HEMPEL AND H. RiTzZDORF, The GMD Communications Library for Grid-
oriented Problems, Tech. Rep. GMD-0589, German National Research Center for
Information Technology, 1991.

[5] S. R. Koun aAND S. B. BADEN, A Parallel Software Infrastructure for Structured
Adaptive Mesh Methods, in Proceedings of Supercomputing 95, IEEE Computer
Society Press, 1996.

[6] J. MiCHALAKES, RSL: A Parallel Runtime System Library for Regular Grid
Finite Difference Models Using Multiple Nests, Tech. Rep. ANL/MCS-TM-197,
Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, Illinois, December 1994.

[7] ——, FLIC: A Translator for Same-source Parallel Implementation of Regular
Grid Applications, Tech. Rep. ANL/MCS-TM-223, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, Illinois, March 1997.

[8] J. MicuHALaKkEs, T. CanNriELD, R. NanNjunDpian, S. HAMMOND, AND
G. GRELL, Parallel Implementation, Validation, and Performance of MM5, in
Coming of Age: Proceedings of the Sixth ECMWEF Workshop on the Use of
Parallel Procesors in Meteorology, World Scientific, River Edge, New Jersey,
1995, pp. 266-276.

[9] B. RopriGUEz, L. HarT, AND T. HENDERSON, A Library for the Portable
Parallelization of Operational Weather Forecast Models, in Coming of Age:
Proceedings of the Sixth ECMWEF Workshop on the Use of Parallel Processors
in Meteorology, World Scientific, River Edge, New Jersey, 1995, pp. 148-161.

15

